Subject: Guidelines and Standards for Subscribing and Utilizing the Internet-based Engine Condition Trend Monitoring WebECTM® Services

Applicability: All Engine Models

This SIL explains the benefits of conducting an Engine Condition Trend Monitoring (ECTM) program, presents the features of WebECTM® Services and provides information on how to subscribe to the service.

This revision 4 announces the transition of our ECTM services from P&WC to CAMP Systems International (CAMP) and the migration, for added clarity, of all technical information contained in prior revisions to this SIL to the applicable Engine Maintenance Manual (EMM) or Service Bulletin (SB).

Definitions

“ECTM” is a process in which changes in certain performance parameters of an engine are analyzed on a regular basis. This is done to help provide early detection of engine performance deterioration due to wear or malfunction of engine components and accessories in order to minimize unplanned downtime and maintenance costs.

“WebECTM® Services” is the sole ECTM system recommended for P&WC engines in accordance with the applicable EMM or SB. The WebECTM® system uses proprietary equations which optimize detection of shifts in engine performance. An integral WebECTM® Services module is also available with the TurbineTracker™ System. No other system is currently recommended by P&WC for this analysis, including previous versions of local ECTM® System IV, ECTM® System V and HECTM System II. Please note that these programs have not been supported or updated by P&WC since 2004.

“Designated Analysis Centers (DAC’s)” offer professionally trained technicians and expert analysis of ECTM data, regular updates on the status of your engines key parameters and anywhere-anytime access to your data via data management systems TurbineTracker™ and WebECTM®. For the analysis of ECTM data, operators may contact any of the Designated Analysis Centers (DACs) listed in Appendix “A”.

A professional analyst will be able to properly interpret trend signature characteristics and suggest remedial action for the following anomalies: premature hot section deterioration, hot start, faulty fuel system, Foreign Object Damage (FOD), bleed air leaks, instrumentation errors and compressor efficiency. Optimized feedback will be realized when the data is inputted, processed and analyzed on a frequent and regular basis.

This Service Information Letter is valid for one year from date of issue.

ISSUED: July 18th, 2011
Alternatively, an operator with in-house expertise may analyze his own data. To subscribe to the basic WebECTM® Services, please contact CAMP.

CAMP Systems International (CAMP). On January 1st 2011, P&WC entered into a collaborative agreement with CAMP. Under this agreement, CAMP is now responsible for the management of the Designated Analysis Centre (DAC) Network as well as providing technical support and data analysis services to operators previously supported by the P&WC DAC, including P&WC pay-per-hour customers. CAMP expertise and knowledge in web-based services technology will benefit to the future development of their WebECTM® Services application.

The P&WC DAC will no longer be in operation and all operations and historical data will be seamlessly transitioned to CAMP. On expiry of their current contract term, customers of the P&WC DAC will be contacted by CAMP for a renewal offer.

General considerations and technical recommendations

The technical recommendations described in prior revisions to this SIL will be incorporated in an upcoming revision of SB or EMM (05-20-00, 71-00-00, 72-00-00), as applicable.

The following topics, which can be found in Appendix “B” and “C”, continue to be valid until the content migrates to the applicable EMM:

- Web-based ECTM Program
- Data Acquisition – In flight, Automatic, Manual
- Data Entry, Normalization and Comparison to Mathematical Models

Benefits of an ECTM Program

The intent of the following technical recommendations will be incorporated in the appropriate section of the applicable EMM or SB. Content previously found in prior revisions of this SIL is moved to Appendix “C” and will become obsolete when reference to this SIL is removed from the EMM or SB.

Specific ECTM Guidelines and Standards for engines using ECTM to establish the required HSI frequency.

This Service Information Letter is valid for one year from date of issue.
Where to Obtain Additional Information

If you have any questions regarding this SIL or any other topic, please contact P&WC as follows:

1. **P&WC Customer First Centre**
 - US & Canada 1-800-268-8000
 - International 1-450-647-8000

2. **Your local P&WC Field Service Representative**

If you have any questions regarding ECTM services, please contact CAMP as follows:

CAMP Systems International
- US & Canada 1-855-WEB-ECTM (932-3286)
- International: 1-450-640-3286
- E-mail: support@webectm.ca

For more information on our products, we welcome you to visit our P&WC’s Website (www.pwc.ca).

Yours truly,

PRATT & WHITNEY CANADA CORP.

Luc Dubois
Diagnostic, Prognostic & Health Management (DPHM)

This Service Information Letter is valid for one year from date of issue.

ISSUED: July 18th, 2011
Appendix A

List of Designated Analysis Centers (DAC)

<table>
<thead>
<tr>
<th>DAC Name</th>
<th>Address</th>
<th>Phone Country</th>
<th>Phone City</th>
<th>Fax Country</th>
<th>Fax City</th>
<th>Email Address</th>
<th>Web Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>DETA (Danish Engine Trend Analyzing)</td>
<td>Aaholmvej 22 DK-9870 Sindal Denmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>deta@deta-trend.com</td>
<td>www.deta-trend.com</td>
</tr>
<tr>
<td>EADS SECA</td>
<td>1 Boulevard du 19 mars 1962 95503 Gonesse Cedex France</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Emmanuel.vienne@seca.eads.net</td>
<td>www.thetrendgroup.com</td>
</tr>
<tr>
<td>The Trend Group</td>
<td>P.O. Box 642 Clovis, CA 93613-9988 USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>info@thetrendgroup.com</td>
<td>www.thetrendgroup.com</td>
</tr>
</tbody>
</table>

Note: Customers previously with the P&WC DAC are now being serviced by CAMP.

This Service Information Letter is valid for one year from date of issue.
Appendix B

Note: The following information remains valid until it is migrated to the appropriate section of the applicable EMM.

WEB-BASED ECTM

Benefits of an ECTM Program:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics</td>
<td>If performed per P&WC instructions, ECTM may assist in maximizing flying time while minimizing unplanned downtime, delays and cancellations. Monitoring of the engine condition in conjunction with EMM periodic inspection requirements helps the operator to address problems before they have a significant impact on operating cost.</td>
</tr>
<tr>
<td>Intervention Planning</td>
<td>Regular trend monitoring of hot section condition and available performance margins in conjunction with EMM periodic inspection requirements provides additional information for the scheduling of repairs and Hot Section Inspection (HSI).</td>
</tr>
<tr>
<td>Reduced Maintenance Time</td>
<td>ECTM can reduce troubleshooting time by directing the technician to the general area of the engine requiring attention. Performance recovery measurement versus performed maintenance (e.g. compressor wash) helps identification of the most effective line maintenance practices for operations.</td>
</tr>
<tr>
<td>Engine Performance Assessment</td>
<td>ECTM used in conjunction with engine calibration and performance check (5-point calibration) data, provides an additional means of assessing engine performance.</td>
</tr>
</tbody>
</table>

Web-based ECTM System

An effective Web-Based ECTM program consists of five parts:

1. In-flight data acquisition (manual or automatic),
2. Data entry, normalization and comparison to mathematical models,
3. Data analysis for detection of anomalies (alerts),

This Service Information Letter is valid for one year from date of issue.
4. Alert management and follow-up actions
5. Computer hardware and software with internet connection.

The WebECTM® requirements for engines using ECTM to establish HSI frequency are presented in paragraph “Specific ECTM Guidelines and Standards for engines using ECTM to establish the required HSI frequency”, the applicable SB or respective EMM (05-20-00, 71-00-00, 72-00-00, as applicable).

In-Flight Data Acquisition

The process to record accurate ECTM data can be located in the General Principles and Interpretation section of the WebECTM® Services application on-line help. There are essentially two different systems for data acquisition, manual and automated, with the following general requirements. P&W recommends the use of compatible automated data acquisition and transmission hardware available through P&W. This equipment can significantly improve predictive capability by enhancing the regularity and consistency in data recording which may not be the case when undertaken manually due to various engine load factors.

The effectiveness of an ECTM Monitoring program is dependant on the quality of data recorded. ECTM relies on consistent and reliable engine performance data that includes ambient parameters; outside air temperature (OAT), altitude (P.ALT), aircraft speed (IAS) and engine performance data; torque (TQ), engine compressor and propeller (if applicable) speeds (NP/N1, NL/NH/NG/N2), turbine gas temperature (ITT) and fuel flow (WF). It is imperative that the required data is acquired at consistent aircraft operating parameters.

People involved in the recording, entry and appraisal of trend data are required to be adequately trained. This also applies to the pilots, if the recording system is not automatic.

Automatic Data Acquisition

P&W promotes the use of automatic data acquisition system. Engine performance data is captured automatically by an acquisition system when the required stable conditions are met. When using automatic data acquisition equipment:

- The correct configuration of the automatic data acquisition unit for specific aircraft/engine combination is critical for the data capture. There should be clear procedures established by the operator and adequate training to ensure that the automatic data acquisition system configuration is carried out during replacement of the acquisition unit and during an engine change.

- There should be a procedure to ensure that self/functional tests and maintenance of the automatic data acquisition unit is carried out per the manufacturer’s instructions.

This Service Information Letter is valid for one year from date of issue.
• The method and the schedule for the transfer of data from the acquisition unit using acceptable methods are to be specified.

• There should be clear procedures to ensure that once data is acquired that it is sent promptly for data entry.

On certain aircraft applications there may be certain engine parameters which are not visible on the instrumentation panel (e.g. NL speed) which can only be acquired with an automatic recorder. In such cases, P&WC recommends the usage of automated data acquisition and transmission hardware to capture and monitor the non-visible parameters. It must be noted however that if an automatic recording device is temporarily out of service, operators must continue to record the engine parameters manually.

Manual Data acquisition

Using manual data acquisition, the required data is collected by the flight crew under stabilized cruise conditions and entered on a form dedicated for WebECTM®. The following are significant elements of this data collection arrangement:

• There should be clear instructions to the flight crew regarding the flight phase and the aircraft configuration under which data are to be collected. This includes bleeds on/off condition, cabin air recirculation on/off condition, hydraulics and anti-ice settings, as well as some guidelines on the desirable altitude at which data is to be collected. The WebECTM® computer program corrects the data for altitude, however it cannot account for the different bleed loads at different altitudes. For pressurized aircraft, data collection above 10,000 feet should minimize data variability due to bleed loads.

• The engine(s) should be stable without throttle movement for at least 5 minutes prior to recording the actual values. A mission (preferably the first or last flight of the day) may have to be modified to meet this requirement.

• The actual flight readings should be recorded and not the target values. It doesn't matter if the engines power indications are mismatch. If the data set is consistent, WebECTM® will normalize accurately.

• One data set per day of flying is considered adequate. The engine parameters should be recorded first without interruption. Numbers must not be rounded. The aircraft ambient conditions should then be recorded. If applicable, the second (and third) engine parameters should finally be recorded.

• There should be clear procedures to ensure that the forms containing WebECTM® data are sent promptly for data entry.

This Service Information Letter is valid for one year from date of issue.

ISSUED: July 18th, 2011
Data Entry, Normalization and Comparison to Mathematical Models

Data entry constitutes an area of potential errors and needs special focus as identified by the following elements:

- The WebECTM® data must be recorded against the engine serial number. It is therefore important to maintain the proper engine configuration in WebECTM®. There should be arrangements for timely incorporation of engine change data into the WebECTM® system.

- Appropriate back-up systems for electronic data should be provided to avoid inadvertent data loss.

Data Analysis for Detection of Anomalies and Alerts

WebECTM® Services is capable of auto-detecting basic anomalies such as threshold exceedances. However, even with this advanced tool, a professionally trained technician is required to properly assess shifts in trends and recommend remedial action. This professional should be able to interpret trend signature characteristics of the following anomalies: premature hot section deterioration, hot start, faulty fuel system, Foreign Object Damage (FOD), bleed leaks, instrumentation errors and compressor efficiency. Optimized feedback will be realized when the data is inputted (processed) and analyzed on a frequent and regular basis.

For the analysis of ECTM data, operators may contact any of the Designated Analysis Centers (DACs) listed in Appendix A. Alternatively, an operator with in-house expertise may analyze his own data following the guidelines below.

- The WebECTM® analysis is to be carried out by a person with adequate experience and familiarity with turbine engines that has undergone the WebECTM® training. Visit the Flight Safety International training website (http://www.flightsafety.com/) for course availability and schedule. Alternatively, on the job training is acceptable, provided the training details are appropriately documented. On line help is also available to customers who have registered with WebECTM® Services.

- Data analysis is to be carried out at intervals specified by the applicable SB, EMM or SIL and the findings recorded.

- Policies on resetting the base lines, for example when installing loan/lease engines or following an engine shop visit, should be specified.

- During data analysis, engine parameters should be reviewed for any exceedances when such data is available from automatic data acquisition systems.

For engines using ECTM to establish HSI frequency, please refer to paragraph “Specific ECTM Guidelines and Standards for engines using ECTM to establish the required HSI frequency” or the applicable SB or EMM for additional requirements.

This Service Information Letter is valid for one year from date of issue.

ISSUED: July 18th, 2011
Alert Management and Follow-up Actions

ECTM will help to identify corrective actions based on the trend data.

- The communication of analyst findings, feedback, suggested corrective actions and measures must be documented to demonstrate compliance with the applicable SB, EMM or SIL.
- The maintenance actions are to be performed in accordance with the EMM, recorded and communicated back to the ECTM analysts.

Hardware and Software.

This web-based software is specifically designed to facilitate use and enable rapid intervention. Key features are:

<table>
<thead>
<tr>
<th>Dynamic Data</th>
<th>WebECTM® Services provides the operator with a global view of data for the entire fleet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessibility</td>
<td>Web-enabled and network-compliant, WebECTM® Services allow multiple users to input and share data from multiple remote locations, at any time. The account administrator will have control in assigning access to service providers and others. WebECTM® Services also allows ECTM records transfer between accounts or to a DAC.</td>
</tr>
<tr>
<td>Engine Synchronization</td>
<td>The system may synchronize data for engines installed on the same aircraft.</td>
</tr>
<tr>
<td>User-Friendliness</td>
<td>WebECTM® Services displays plots within large graphical displays with a zoom-in feature for viewing specific data. Color-coded data displays and symbols allow users to quickly decipher information. Easy-to-access on-line help is available, displaying information related to the active window.</td>
</tr>
<tr>
<td>Turbofan Engine Calibration</td>
<td>WebECTM® Services features a step-by-step engine calibration and performance check (5-point calibration) utility as recommended in section 71-00-00 of the Maintenance Manual. The calculated residual margin data is stored and plots are available for future comparison.</td>
</tr>
</tbody>
</table>

Notes: WebECTM® Services may be used concurrently with the Diagnostics, Prognostics and Health Management (DPHM) Service.

The DPHM Service includes all hardware and software enabling you to perform flight line maintenance tasks such as:
- Downloading engine data and performing Real-time monitoring
- Engine troubleshooting and diagnostic analysis
- Linking faults to the Fault Isolation Charts in the Interactive Electronic Technical Manuals.

This Service Information Letter is valid for one year from date of issue.
Appendix C

Note: The following information remains valid until it is migrated to the appropriate section of the applicable EMM.

SPECIFIC ECTM GUIDELINES AND STANDARDS FOR ENGINES USING ECTM TO ESTABLISH THE REQUIRED HSI FREQUENCY

Recommended Starting Point for Monitoring Engine Trends

When approved by the local airworthiness authority and in compliance with the applicable EMM and/or SB, ECTM is to be initiated within the first one hundred (100) hours of operation of a new engine, a newly Hot Section Inspection (HSI) engine or newly overhauled engine.

If the engine trend is to be initiated later than the above requirement, fixed interval maintenance programs will remain applicable. Refer to the applicable EMM for specific engine model instructions. If an engine does not have hard time limits or specific instructions, please contact the P&WC Customer First Centre at cfirst@pwc.ca for support.

Time Frames for Data to be Collected/Downloaded

ECTM data should be recorded at least once every flying day, or once for every six (6) flight hours if the engine is flown more than six (6) hours a day. This data is to be entered (processed) in the WebECTM® Services application at least every seven (7) calendar days or as specified by the applicable Aircraft Maintenance Manual (AMM) or EMM.

Under exceptional circumstances, such as automatic recorder malfunction or adverse flying conditions, a maximum of three (3) consecutive flying days or a maximum of eighteen (18) running hours of missing data is acceptable. The cause of the problem should be investigated promptly and rectified.

Time Periods for Data Review/Analysis

It is recommended that the data be reviewed within a maximum interval of seven (7) calendar days of being inputted in the system.

Qualifications Required for Engine Trend Analysis

Trend analysis is to be performed by qualified personnel who have successfully completed a P&WC approved ECTM / WebECTM® course or have demonstrated more than one (1) year of experience using the WebECTM® Services application in conjunction with trend analysis. In addition, they should have knowledge of fundamental technical and operating characteristics of the engine(s) being trended. P&WC provides a schedule of WebECTM® courses available on Flight Safety International Training.

This Service Information Letter is valid for one year from date of issue.
website (http://www.flightsafety.com/). It is also recommended that qualified personnel follow recurrent training every three (3) years.

Data Interpretation

Reference should be made to the applicable EMM or AMM for guidelines and threshold values when interpreting ECTM data. If the EMM or AMM does not specify any guidelines regarding ECTM data interpretation, refer to the General Principles and Interpretation section of the WebECTM® Services On-Line Help for description, guidelines and interpretation.

Retention of Data and Trending Documentation

Data and supporting documentation is to be maintained by the Operator or the Designated Analysis Center for a period of seven (7) years, or until the overhaul of the engine being analyzed, whichever is longer.